The change in the orientation of the evaporation head (horizontal and vertical positions) and also the in-
crease in the temperature of the cooling water to 60°C had an insignificant effect on the amount of the removed
power and the temperature within the heater.

NOTATION

d, 1, diameter and length of the porous sample, respectively; T4-Ty,, temperatures, measured by the
thermocouples 1-10(Fig. 1); AT =Ty~T;, radial temperature drop along the wick; Q, supplied power; Qzqe, dsge°s
Cgas supplied power, supplied heat-flux density, heat-transfer coefficient at the temperature T8=300°C, res
spectively.
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THREE-DIMENSIONAL RADIATIVE HEAT-TRANSFER
PROBLEM WITH SHADING

V. F, Kravchenko and V, M. Yudin UDC 536.3

The problem of radiative heat transfer between diffuse gray surfaces bounding a closed volume
of arbitrary configuration is discussed.

Often in calculations of the heating of airframe structures it is necessary to solve problems of radiative
heat transfer between the surfaces of various structural elements forming the interior compartments of an
aircraft. In many cases the entire bounding surface is nonconvex and has such a complex configuration as to
present serious difficulties in applying the zonal method.

-For situations in which one of the dimensions of such a bounded volume is much greater than all the rest,
we have proposed [1] a method for solving the planar radiative heat-transfer problem with allowance for shading
and have demonstrated the substantial influence of this factor on the distribution of Qinc OVer the surface of
compartments of real structures. In the present study we elaborate the method of analysis of radlatlve heat
transfer with allowance for shading in the three~-dimensional case.

We consider the problem of radiative heat transfer between diffuse gray surfaces bounding a closed vol~
ume of arbitrary configuration. An open volume can be closed by the addition of a fictitious surface with e=1
and T=(@q,_/ o)V, where q,, is the dissipated heat flux from the surrounding medium,

We assume that the bounding surface comprises N plane faces having the shape of a convex rectangle.
These are actually the kind of surfaces that occur in the majority of real problems, and any continuous surface
can always be approximated with sufficient accuracy by a system of plane faces. The temperature and emis-
sivity distributions over each face are variable,

The radiative heat transfer in such a region is described by a system of Fredholm integral equations of
the second kind in the incident flux density:
N
Gy (P = 3 [{oe (0 T*(0) + (1 — e (9N G (B} K (51, p) dF, @
j=1Fj
i=142, ..., N,

where K(pj, pj) is a funection of the angular coefficients:
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Cos @y (P P COS@ (P P ¢, _g
K (pi’ Pj) = K(p.ir pz) = nR2 (pi, Pw) ' (2)
0 if  u=I,
¢4 and ¢, are the angles between the normals to the i~th and j~th faces and the line segment of length Ry, pj :)

joining points p; and Pjs and ® is the visibility parameter: The point p; "sees™ the point 1 for n=0 and does
not see it for n=1.

Points p; and p; are mutually visible if the angles between the normals to the surfaces on which thepoints
are situated and the segment [pi, pj] have absolute values less than x/2, i.e., if

cos @y (P, ;) >0, cosq,(pj pi) >0 ®)

and the segment [pi, p.] does not intersect any faces of the surface other than the i~thand j-thfaces. The lattercon-
ditions holds if either the segment does not intersect the planes through these faces, i.e.,

126, —1|>1, k=1,2, ..., N, k%1, |, “)
where
Ayx; + By 4 Cyz; + D,
Ay (25— ) + By (95— 9:) + C (2 — 2)

t, =

and Ay, By, Ck, Dy are the coefficients of the equation for the plane passing through the k-th face, which are
expressed in terms of the coordinates of three corners of the face:

x y z 1
Xp o Yo 2 ]
Xn Yor Zn 1

1

Xse Yar

or the point of intersection py does not belong fo the k-th face, as is indicated by failure of at least one of the
conditions

te>1, s=1,2 3 4, )

where
z(x,' — X)) —y.)— 0 —x )y — Y.y y)
# (x/;_x;)(ys’_ysl_}.])”"(xs'—xs’.;_l)(y];—yc,)

=Xy Y =Yy

t, , s=1,2 3 4,

X4

4 4 )
LR
4 s=1 4 s=1

x!, y's (s=1, 2, 3, 4), X", ¥k are the coordinates of the corners of the k~th face and the point of intersection
in the local coordinate system 0x'y'.

We now proceed with the solution of the system of equations (1). On each face we overlay a variable-
step computing grid with boundary points situated at the faces (see Fig. 1). We denote the number of grid nodes
on the j-th face by MJ =S8R, and the number of mesh cell by L (S —1)R — 1), where S and R are the numbers
of nodes in the direction of the axes 0x' and 0y', reSpectlvely. We enumerate the cells in such a way that
l=s4+(@r—1DES—10, s=1,2 ...,8r=1,2 ...,R,
and the order numbers of the nodes comprising the corners of these cells are, respectively,
My =54 (—1)8,
my,=s=+rS, s=12 ...,
mga=s+1+4+rS, r=12 ...,R,
my,=s+1+4(r—1NS.

From the system of equations (1) we obtain the following expression for the incident flux density at the
nodes:

16



N Lj
Gpotim = 22 Y {oe (p) T*(p)) + [1 — & (PN G4, (PN} K (P1,ms P;) dF;, (©)
j=11=1 Fi,l
i=1,2 ..., N, m=1,2 ..., M.
We denote
f(p) = ce(p) T*(p) + [1 —2(p)l q,,.(p) )

and approximate the function (p) in the I-th cell of the j-th face by the linear function
O, Y)=a,,; +ax +as,y +a..xy. 8)

The coefficients a4 ; of the approximating function are determined from the condition that it coincide with
f(p) at the corners of the cell:

ag -+ az,lx,’nl B + a3,ly,;1’ . + a4,lxr;zl vyr;l .‘ij'ml,t ’ (9)
t=1, 2, 3, 4.
Solving (@), we obtain
4 At,rn
g, = ¥ LT fom 10
t,1 H Aj,z fl-m”r ( )

=1

where AJ- ; is the determinant of the system of equations (9) and Ay my ¢ denotes the corresponding signed
s £
minors, ’

Taking (7), (8), and (10) into account, we express the integrals in (6) in terms of the values of the func-
tion f(p) at the nodes:

4
j Fe)K(pi,ms 735) ar; = sz.ml,rfi,mt K (11)
Te=} !

Ff.l

where

i
Bim, = —

3.l

r .
{Ai’ml,r ‘) K(pi,m‘ pJ) dFJ T Az,ml,_rx
Fj,l
X XK Prm P+ Ay [ 5K Pir P dFs +
Fj,l F]',l

i 12
+ Aim, . | FYK i p)dFs} - az)
Fjl

The coefficients Bj,my r depend only on the form of the surface and its partitioning, The integrals enter-
ing into (12) are computed nimerically according to Korobov's algorithm for the computation of multiple inte~
grals whose integrands do not contain singularities of order higher then x™* ?'y"i/ 2, Although the integrands
in (12) have higher-order singularities in the cells adjacent to points Pi,m situated along the edges and at the
corners, the corresponding integrals are completely determined by finite functions of the points pi> and as p4
tends to Pi,m the value of the integral tends asymptotically to its value at the point Pi,m- Accordingly, the

r4

| ,
I ﬂ
a4

AL ﬂ‘

24714 "l -’

%oy

| EE

Ve ; /
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Y d x

Flg 1. Computing scheme,
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Fig. 2. Errors of determination of qjpe, %, according to
a plane computational scheme,

Fig. 3. Distribution of incident heat-flux density Qipe
&W/m?) over lower face of a cube: 1) with shading; 2)
without shading,

computation of the integral for the point Pi,m with a singular integrand is replaced by computation of the inte-
gral for a point pj m +06 in the neighborhood of pj y, such that the integrand is bounded at that point, Forpoints
Pi,m situated along an edge, Pi,m +90 is taken on the pemendicular to the edge, and for such points situated at

a ecorner the new point is taken on the median.

Substituting (11) into (6), grouping terms by nodes, and taking (7) into account, we obtain a system of
linear algebraic equations in the incident heat-flux densities at the nodes:

N M
Gnc tm = 2 E {Uei,nT;“-n +(1—g;,) qincj'"} Hiins 13)
j=1n=1 .
i=1,2 ..., N, m=12 ..., M,
where H is the matrix, amalogous to the matrix of local angular coefficients, with elements
Hi.m.i,n= 2 Bl.ml_,r' (14)
m1',r=ﬂ

As in the case of the matrix of local angular coefficients, this matrix satisfies the closure conditions

N M
> S Himpn = Dim =1, (15)
=1 n=1

i=1,2 ...,N m=12 ..., M.

Inasmuch as the satisfaction of conditions (15) is essential for convergence of the iterative solution of
the system (13) and as certain violations of those conditions are possible in computer calculations as a result
of computational errors, before the system can be solved the elements of the matrix H must be normalized:
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H Hi.m.i.n
im,jn = D ’

i,m
i,f=l,2,.--,N, m,n:1,2,-.-,Mi(Mj).
The system (13) is solved iteratively in order to include the temperature dependence of the emissivity

in conductive and radiative heat-transfer problems, To speed up the convergence of the iterative process we
invoke the principle of conservation of energy in radiative heat transfer within a closed volume:

(16)
¢ & () 4,0 (P) dF = o2 (p) T*(p) dF.
F F
Here we use as the initial data for the k-th iteration, rather than the values of qi(ﬁ;l% m’ the quantities
Jinci,m = Q:::”m + 6, 17)
where i=1, 2, , N, m=1, 2, , M,
N Mj "
2 2 C]',n (st,nTi,'l - ef,nqgﬁz}.)n)
j=1 n=1
0= N M '
Z 2 Ci.nsj,n

j=1 n=1
and Cj.n denotes the coefficients of the representation of the integrals in (16) in terms of the values of the
integrand at the nodes when approximated by expression (8) in the cell.

We have developed a FORTRA N program in accordance with the proposed method, We have used the
program to perform calculations of the radiative heat transfer in a rectangular parallelepiped with square
contours of various lengths. The temperature of the ends and vertical faces is assumed to be constant and
equal to 300°K, and the temperature of the horizontal faces is assumed to be a constant 800°K., The emissivity
of all the faces is considered to be identical and equal to 0.5. The calculations are carried out according to a
plane scheme for the same contour. Figure 2 gives the corresponding deviations of the values of Qipe &t the
center of the sides of the contour from the values of Qine 2t the center of the horizontal and vertical faces of
the parallelepiped. It follows from the given data that the errors of computation of Qipe according to theplane
scheme are substantial for elongations L,/1.;<3.

We have carried out a computation with allowance for shading in the case of a cube with its first quarter
excised (see Fig. 1). The temperature of the upper face is assumed to be 800°K, and the temperature of all
other faces 300°K, All faces have the same emissivity, equal to 0.5, Figure 3 gives the resulting distribution
of djpe over the surface of the lower face. Also given in Fig. 3 is the distribution of Qipe for the case inwhich
shading is absent, i.e., for the whole cube with the same region at a temperature of 800°K on the upper face as
when shading is taken into account.

NOTATION

X, ¥, Z, coordinates; x', y', coordinates of local system; T, temperature; ¢, heat flux from surrounding
medium; g;,., incident heat flux; 0, Stefan—Boltzmann constant; €, emissivity; K(p;, p;), function of angular
coefficients; ¢, angle; p;, p;, surface points; N, number of faces; Fj, area of j-th face; Mj, Lj, number of nodes
and cells on j-th face; n, visibility parameter; t, tg 5, parameters.
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